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and (6. ‘7) yields e, = U-lG-l~ and the vector e is defined in terms of the known 
thermodynamic derivatives er v, using the formulas (6.1). 

It can easily be shown that the scalar product edq / ar is invariant under the linear 
transformations introduced above. From this it follows that Eq. (5.6) finally assumes 
the form 

2( emQv - 13,2&) .t$ +A[2~,t(V.--)~]=E~2~e~~ 

and, together with Eqs. (6.7) it forms a closed system of the order equal to the number 
of the relaxation processes plus one. 
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Among the attempts to extend the applicability conditions of the general theo- 
rems of dynamics, a prominent position is occupied by several generalizations 
of the area theorem proposed by ChaGlygin and successfully applied by him to 
solving a number of problems on the rolling of spheres [l, 23. Further general- 
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izations of the area theorem appear in [3, 41, Chaplygin’s generalizations are 
based on the theorem on the variation of the moment of momentum relative to 
a moving line of fixed orientation constantly passing through some moving point 
[I]. We show below that in the classical problem of the rolling of rigid bodies 
without slippage the theorem’s hypotheses completely determine the form of the 

surfaces of the rolling bodies. 

1, We cite the most general one of the known formulation of the theorem on the vari- 
ation of the moment of momentum of a mechanical system relative to a moving axis. 

The system con&& of an arbitrary number of material points and ideal constraints can 
be imposed on it. Let a certain line AL retain a fixed orientation in space and pass 
constantly through a moving point A. 

The ore m 1 [5, 61. If (1) among the possible displacements of the system there is 
a rotation of the whole system as a rigid body around the axis AL and (2) the condition 

is satisfied, then the time derivative of the system’s moment of momentum relative to 
this axis equals the sum of the moments of all forces acting on the points of the system 

relative to this same axis 
1 tilA& = l+fAL (I.21 

Here vA is the velocity of point A, VG is the velocity of the system’s center of mass, 
e is the unit vector along axis AL. Point A may not coincide with any specific ma- 
terial point of the system during the whole time of motion. Each time we wish to stress 
this circumstance we shall call it the ” geometric point”. It is evident that if condition 

(1.1) is satisfied for one point of axis AL, it is satisfied for any other point of this axis. 

Chaplygin’s theorem Cl] requires the satisfaction of the less general condition VA = kv, 

fh is an arbitrary constant) instead of (1.1). 
Let us analyze the possibility of satisfying the hypotheses of the above-stated theorem 

when the mechanical system is a rigid body bounded by surface Ss, which rolls on a 

fixed surface Sr, while the constraints express the absence of slippage at the point A of 

contact of surfaces S, and S,. We assume that surfaces S, and Sz are tangent to each 
other at no more than at one point and admit of a twice continuously differentiable para- 
metrization. We consider an arbitrary instantaneous position of the body. We specify the 
vectors by their coordinates in some reference frame XYZ with the origin at point A. 
The axis AZ is directed along the common normal to the surfaces, while the axes AX 
and AY are directed along the curvature lines of surface S, (AXYZ is a rectangular 

coordinate system). The possible displacements of the system express, obviously, a rota- 
tion of the body around point A ; therefore, the condition (1) can be satisfied only if 
the moving axis mentioned in the theorem passes through point A. Let e (a, p, r) be 
the unit vector along this axis AL. 

The body’s instantaneous angular velocity can be decomposed at point A into two 
components [5, 61: the rotating angular velocity ft directed along the common normal 
to the surfaces and the angular velocity of pure rolling w located in the common tangent 

plane n. The angular velocity of the rotation of the plane tangent to surface St (i= I, 
2) at point A has the components - Fc2%s and k,%~,, 0, where hi(i) and k&i) 

are the curvatures of the normal cross sections of the surface along the coordinate lines 
AX and A Y, respectively, and VA (vr, F~, 0) is the velocity of the geometric point 
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A. Consequently, considering the body’s pure rolling as a complex motion (the rolling 
of plane JC over fixed surface s1 and the rolling of surface S2 over plane n), we obtain 

6J [--- (@f @))Us, (ky’+ @)Ui, O] 

As surface ss rolls along surface s, let their point of contact trace out certaincurved 
lines L, and JJ2 on these surfaces. By JigI and kg2 we denote the geodesic curvatures 
of these lines at point A . Then, obviously 

’ lo, O, (‘!@ - &I) ) VA 11, 1 VA 1 = v/v12 + ut2 

It is now easy to determine the velocity components of the body’s center of mass 

v(; [z (h(,‘) + k:2)) u1 - y (kg2 - kgl) 1 VA 1 

2 (kg”+ k?) v2 + 2 (kg2 - kg,) ) VA/, 

- y (k;’ + I$‘) v2 - z (ki” + ky)) vl] 

where z, y, z are the coordinates of the center of mass. Condition (1. 1) can be writ- 
ten as 

- au2 [Y (k? + k?‘) u2 + CC((~:~) + kj2’) vl] + &~1 [y (kp’ + @‘) u2 + (1.3) 

x (k2(11) + k’,2’) u, ] + 7 [ zv1v2 (k;) - kl” + k;“’ - kr’) + 

I Y4I(b- ~%dW + YV2)l = 0 

We note that the existence of the moving axis AL can depend upon the body’s posi- 
tion and velocity at the initial instant. But then the area integral 

KIL = const (I. 4) 

following from (1.2) when M AL = 0, is obviously a partial integral of the body’sequa- 

tions of motion. We do not examine this singular case here. Thus, relation (1.3) must 
be satisfied identically relative to the independent variables or, v2, kg2 - kg1 which 
can take arbitrary values under all possible kinematically admissible motions of the body. 

Consequently 
5 = 0, y = 0, r (I@ - ,$y’ + #) _ @‘) = 0 (1.5) 

Since the body can be tangent to the fixed point A of the fixed surface s, at any 
point of its own surface (it is clear how to change the subsequent formulations if tangency 

is possible at the points of only a part of the body’s surface), the relation 5 = y = 0 
shows that the normals to surface S2 all intersect at one point, namely, at the body’s 
center of mass G . Taking center G as the origin, we write the condition for the co- 

linearity of the normal and the radius-vector r ]z (U, v), y (U, u), 2 (u, v)] ofsurface 

S, (u, u are the Gaussian coordinates of the surface) 

(1.6) 

Hence we obtain 
.@a),’ = (I.?,,,’ = 0 

i, e. 1 r 1 = con&. Thus, S2 is a sphere with center at point G 
Let us ascertain the form that the fixed surface S, can have. Two cases are possible. 
First case. At point A of surface S, 

r#O 
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Then from (1.5) it follows that the principal curvatures kl(‘) = k&l), i. e. point .A of 
surface Sr is an umbi~cal point. By virtue of the continuity of the normal vector and 

of the constancy of the orientation of axis AL, on surface S, we can find some neigh- 
borhood of point A at each point of which y # 0, i.e. by what we proved above all 

points of this neighborhood are umbilical points. Consequently, they belong to a spheri- 
cal surface [7]. 

Second case. At point A of surface S, 

v 0 = 

a) If y = 0 at all points of some neighborhood of point A on surface S,, then, 

obviously, this surface is a part of a cylindrical surface with generatrix parallel to axis 

AL. 
b) If in any sufficiently small neighborhood of point A on surface S, there are 

points at which y f 0, then by what we have proved they are umbi~cal points. 
By the continuity of the second quadratic form of surface S1 the values of the princi- 

pal curvatures coincide at point A. On the surface we can find some neighbo~ood of 

point A all of whose points are umbilical points. Otherwise, according to (a), any arbit- 
rarily small neighborhood of point .4 on surface SI must contain a rectilinear segment 
of the generatrix. This, however, would contradict the sign-definiteness of the second 
quadratic form at the umbilical point A. Consequently, the certain neighborhood of 

point A on surface 5’r is spherical. Thus, we have proved the following statement. 

Theorem la. As a rigid body rolls without slippage on a fixed surface the hypo- 
theses of Theorem 1 are satisfied only when the body is a sphere with a centro-symmet- 
ric distribution of mass, while the fixed surface is either a spherical surface (in parti- 
cular, flat) or an arbitrary cylindrical surface (in the latter case the directions of the 
moving axis AL and of the cylinder’s generatrix must coincide). 

2, Three integrals of form (1.4) enable us to reduce to quadratures the complicated 
problem of the rolling of an inhomogeneous symmetric sphere on a rough horizontal 
plane [Z]. Chaplygin had pointed out some other conditions for the existence of the ln- 
tegrals of motion. 

The ore m 2 [l]. Assume that a mechanical system consisting of an arbitrary num- 
ber of material points can be separated into two individual parts (subsys~~) : I and 11 
with forwardly moving parallel axes EL and CL’. 

1) Let the constraints and the axis BL of subsystem I satisfy the hypotheses of 

Theorem 1, and in addition, let the moment of the external forces acting on the points 
of this subsystem (neglecting the mutual reactions of subsystems I and II), taken relative 
to axis BL, equaX zero. 

2) Let the same be true for subsystem II and axis CL’. 
3) Concerning the reaction forces of subsy&ems I and II, assume that the sums M 

and n/r’ of the moments of these forces taken relative to axes BL and CL’, are in a 
fixed ratio 

M:M’=p 

(p is an arbitrary constant), Then the system’s equations of motion admit the first in- 

K + pK’ = const (2.2) 

where K and K’ are the sums of the moments of momenta relative to axes BL and 
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CL’ , respectively, for the first and second subsystems. 

Let us ascertain the possibility of applying this theorem to the following problem: a 

body (subsystem I) rolls without slippage over a fixed surface S, and another body (sub- 
system II) of bounded surface Ss rolls, also without slippage, over the surface Ss of the 
first body. For brevity we call this system a composite system with rolling. Let us con- 
sider an arbitrary instantaneous position of the bodies. According to Sect. 1, hypothesis 
(1) of the theorem can be satisfied only if axis BL passes through the point of contact 
of surfaces SZ and S,. We denote this point by B and we denote the point of tangency 
of surfaces Ss and S2 by A. We select a fixed rectangular coordinate system XYZ 
with origin at point A, and we direct the axis AZ along the normal to surfaces Ss and 
S,. Obviously, without loss of generality, we can take it that the axes BL and CL’ 
intersect the coordinate plane AXY at points with coordinates (x1, yr, 0) and (52, YZ, 
0) , respectively. 

let us write condition (2. 1) as 

aR, (P-LY, - ~1) - PRz (P ~2 - ~1) + y [R, (PG - 4 - (2.3) 
- R, (K./Z - YI)] = 0 

where 01, p, *f are the direction cosines of the parallel axes BL and CL’; R,, R,, 
R, are the components of the reaction of body I on body 11 at point A, and R, (Rx2 + 
R,“) # 0. The vector with components (R,, R,, 0) is the force of friction and is al- 
ways directed along the vector of relative (with respect to surface S,) instantaneous 
velocity of the geometric point A. But the relative velocity of the geometric point A 
can have an arbitrary direction in the plane AXY. Therefore, for the satisfaction of 

condition (2.3) it is necessary that p$ - zr =0 and PI/?-~, =O,i.e. point-4 
and the moving axes BL and CL' must constantly be located in one plane. Having 

denoted the point of intersection of the line A B with the axis CL by IL’ we find 

AB=pAC, BC=BAF 

(Obviously, the hypotheses of Theorem 2 are not satisfied for p = 1 and p = 0). 
Since the second hypothesis of Theorem 2 must be satisfied for any kinematically admis- 
sible values of the body’s velocity, let us consider the case when the instantaneous velo- 
city of body I equals zero and the velocity of body II has an arbitrary admissible value. 
In this case the instantaneous velocities of the geometric points A and C are related 

bY P---1 vC=vA- 
CL 

Therefore, condition (1.1) for subsystem II takes the same form as in Sect. 1. Conse- 
quently, byTheorem la surface S, can .only be spherical, and the center of mass of body 
II coincides with the geometric center of the sphere. Surface S2 can be spherical or 
cylindrical , but, according to condition (1) and Theorem 1 a, surface Ss is spherical in 
some neighborhood of point B. If we assume the existence of a continuous second quad- 

ratic form at all points of surface S’s, then, obviously, this surface can only be spherical. 
The center of mass of body I must be located at the center of sphere S,. Thus, we have 
proved 

Theorem 2a. In a composite system with rolling without slippage the hypotheses 
of Theorem 2 are satisfied only when each body is a symmetric sphere and the fixed 
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surface is spherical or cylindrical. 
N ote . Theorem 2 admits of certain generalizations [l]. One of them Mates to the 

case when the moving system consists of n parts reacting with one another and arranged 
similarly to the links of a chain with free ends, For example, on a fixed surface there 
rolls a hollow body inside which there rolls another hollow body and inside this there is 
another hollow body, and so on. Another generalization of Theorem 2 relates to the case 

when n Parts of a mechanical system interact somewhat differently: certain B, - 1 
parts (the system’s satellites) react on one part of it (the system’s nucleous). As an ex- 
ample of such a system we can take a hollow body (the nucleuaj with a set of noninter- 
secting surfaces inside it, along each of which there rolls one body (the system’s 

satellites). Considering the examples mentioned as composite systems with rolling it is 
easy to see that in the absence of slippage between the touching surfaces the statement 

of Theorem 2a remains in force for these generalizations of Chaplygin. 

3. Integral (2.2) characterizes the transfer of a moment from one part of the system 
to another. An exchange between the moment of momen~m of one part of a system and 
the momentum of another part of it can take place under specific conditions. Let uscon- 
sider a translationally moving coordinate system XYZ with origin at a point B and a 
line CZ’ parallel to BZ, where the track of C of this line has a fixed disposition on 
the plane BXY. 

Theorem 3 [l]. 

1) Assume that one part (subsystem) I of a mechanical system and the axis BZ 
satisfy the requirements of Theorem 1, and, in addition, let the moment of the external 
forces acting on the subsystem’s points (neglecting the mutual reactions of subsystems I 
and II), taken relative to axis BZ, equal zero. 

2) Let the constraints imposed on subsystem II be such that they allow translational 
displacements without altering the configuration in any direction perpendicular to the 
axis BZ and let the external forces satisfy the same restriction as for subsystem I. In 

this condition, as in the one preceding, the possible displacements of one subsystem are 
examined under the assumption that the other subsystem can be set aside and be replaced 

by the forces of its action on the first subsystem. 
3) It is further required that the moment of the reaction forces on subsystem I from 

subsystem II, taken relative to axis CZ’, be zero. 
Then the system’s equationsof motion admit of the first integral 

RBZ + (I x Q)sz = const 

where KBZ is the moment of momentum of subsystem I, taken relative to axis BZ, Q 

is the momentum of subsystem II, r is the vector BC. 
N o t e . Concerning the constraints imposed on subsystem I I, it is sufficient to require 

that there exist possible d~piacemen~ of the system as a rigid body in the direction per- 
pendicular to plane CBZ [3]. However, for composite systems with rolling this weak- 
ening does not play any role since body I I, after the replacement of its couplings with 
body I by reaction force, becomes free. 

We have the valid 
Theorem 3a. The hypotheses of Theorem 3 are not satisfied in any composite 

system with rolling without slippage, 
Proof. We, use the notation introduced in Sect. 2. According to condition (1) and 
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Theorem la, surface Ss must be spherical. In the presence of friction. at point A of 
contact of surfaces Ss and Ss the theorem’s hypothesis (3) can obviously be satisfied 

only if the axis CZ’ passes constantly through point A. Consequently, the projections 
of the velocities of the geometric points B and A onto plane BXY must, by hypo- 

thesis, be equal, which does not obtain in general. Theorem 3a is proved. 
In conclusion we emphasize that the statements of Theorems la, 2a and 3a are valid 

when the relative velocities of the bodies at their points of contact equal zero; other- 

wise, the statements lose force. For example, under an appropriate choice of the moving 
axes the hypotheses of Theorem 3 are satisfied in the problem of the rolling of a body 
of arbitrary form over the absolutely smooth surface of a moving sphere [l]. 
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The Rayleigh theorem on the properties of the spectrum of a linear conservative 
mechanical system is generalized to embrace the gyroscopic systems, i. e. to the 
case in which the equations of motion contain, in addition to the kinetic and po- 
tential energy matrices, an arbitrary skew-symmetric matrix of gyroscopic forces. 

1, Line&r gyrorcopic ryrtem. We shall consider a linear gyroscopic system 

described by the following general expression: 

Aq”+I’q’+Cq=O, qERn (1. 1) 

where A is the kinetic energy matrix, C is the potential energy matrix, both A and 

I? being symmetric n x n matrices, and I? is a skew-symmetric matrix of the gyro- 


